Optimizing Base Rankers Using Clicks - A Case Study Using BM25

نویسندگان

  • Anne Schuth
  • Floor Sietsma
  • Shimon Whiteson
  • Maarten de Rijke
چکیده

We study the problem of optimizing an individual base ranker using clicks. Surprisingly, while there has been considerable attention for using clicks to optimize linear combinations of base rankers, the problem of optimizing an individual base ranker using clicks has been ignored. The problem is different from the problem of optimizing linear combinations of base rankers as the scoring function of a base ranker may be highly non-linear. For the sake of concreteness, we focus on the optimization of a specific base ranker, viz. BM25. We start by showing that significant improvements in performance can be obtained when optimizing the parameters of BM25 for individual datasets. We also show that it is possible to optimize these parameters from clicks, i.e., without the use of manually annotated data, reaching or even beating manually tuned parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Personalized Advertisement Recommendation: A Ranking Approach to Address the Ubiquitous Click Sparsity Problem

We study the problem of personalized advertisement recommendation (PAR), which consist of a user visiting a system (website) and the system displaying one of K ads to the user. The system uses an internal ad recommendation policy to map the user’s profile (context) to one of the ads. The user either clicks or ignores the ad and correspondingly, the system updates its recommendation policy. PAR ...

متن کامل

Bayesian Aggregation of Order-Based Rank Data

Rank aggregation, that is, combining several ranking functions (called base rankers) to get aggregated, usually stronger rankings of a given set of items, is encountered in many disciplines. Most methods in the literature assume that base rankers of interest are equally reliable. It is very common in practice, however, that some rankers are more informative and reliable than others. It is desir...

متن کامل

iRANK: A rank-learn-combine framework for unsupervised ensemble ranking

The authors address the problem of unsupervised ensemble ranking. Traditional approaches either combinemultiple ranking criteria into a unified representation to obtain an overall ranking score or to utilize certain rank fusion or aggregation techniques to combine the ranking results. Beyond the aforementioned “combine-thenrank” and “rank-then-combine” approaches, the authors propose a novel “r...

متن کامل

Different Rankers on Different Subcollections

Recent work has shown that when documents in a TREC ad hoc collection are partitioned, different rankers will perform optimally on different partitions. This result suggests that choosing different highly effective rankers for each partition and merging the results, should be able to improve overall effectiveness. Analyzing results from a novel oracle merge process, we demonstrate that this is ...

متن کامل

Co-Feedback Ranking for Query-Focused Summarization

In this paper, we propose a novel ranking framework – Co-Feedback Ranking (CoFRank), which allows two base rankers to supervise each other during the ranking process by providing their own ranking results as feedback to the other parties so as to boost the ranking performance. The mutual ranking refinement process continues until the two base rankers cannot learn from each other any more. The o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014